Google trans translate

Author: e | 2025-04-25

★★★★☆ (4.1 / 3369 reviews)

Front Email API

Translator (Google Translate DeepL Translator), free and safe download. Translator (Google Translate DeepL Translator) latest version: Google Tran

wish.com clothing

Translate a pdf to english google trans

Source command-line language translator tool powered by Google Translate, Yandex Translate, Apertium, and Bing Translator. It is available for most POSIX-compliant systems including Windows (via Cygwin, WSL, or MSYS2), GNU/Linux, macOS, and BSD.Translate Shell allows users to use it for simple translations or as an interactive shell. For simple translations, Translate Shell gives details of the translated text by default unless when made to do exclude the details using the keyword, brief.$ trans 'Saluton, Mondo!'Saluton, Mondo!Hello, World!Translations of Saluton, Mondo![ Esperanto -> English ]Saluton , Hello,Mondo ! World!$ trans -brief 'Saluton, Mondo!'Hello, World!When used as an interactive shell, it will translate the texts as you enter them line by line. For example,$ trans -shell -brief> Rien ne réussit comme le succès.Nothing succeeds like success.> Was mich nicht umbringt, macht mich stärker.What does not kill me makes me stronger.> Юмор есть остроумие глубокого чувства.Humor has a deep sense of wit.> 幸福になるためには、人から愛されるのが一番の近道。In order to be happy, the best way is to be loved by people.Install Translate Shell in LinuxMy recommended download method is for you to grab the self-contained executable file from here, place it in your path, and run the following commands:$ wget git.io/trans$ chmod +x ./transFor more details on installation and usage check its official GitHub page here.Do you know other awesome command line text translator apps for Linux? Add your suggestions in the comments section below. In DC Grid. IEEE Trans. Power Deliv. 2015, 30, 519–528. [Google Scholar] [CrossRef]Saad, H.; Dennetière, S.; Mahseredjian, J.; Delarue, P.; Guillaud, X.; Peralta, J.; Nguefeu, S. Modular Multilevel Converter Models for Electromagnetic Transients. IEEE Trans. Power Deliv. 2014, 29, 1481–1489. [Google Scholar] [CrossRef]Guo, C.; Yang, J.; Zhao, C. Investigation of Small-Signal Dynamics of Modular Multilevel Converter Under Unbalanced Grid Conditions. IEEE Trans. Ind. Electron. 2019, 66, 2269–2279. [Google Scholar] [CrossRef]Guo, C.; Liu, W.; Zhao, J.; Zhao, C. Impact of control system on small-signal stability of hybrid multi-infeed HVDC system. IET Gener. Transm. Distrib. 2018, 12, 4233–4239. [Google Scholar] [CrossRef]Peralta, J.; Saad, H.; Dennetiere, S.; Mahseredjian, J.; Nguefeu, S. Detailed and Averaged Models for a 401-Level MMC–HVDC System. IEEE Trans. Power Deliv. 2012, 27, 1501–1508. [Google Scholar] [CrossRef]Saad, H.; Peralta, J.; Dennetière, S.; Mahseredjian, J. Dynamic Averaged and Simplified Models for MMC-Based HVDC Transmission Systems. IEEE Trans. Power Deliv. 2013, 2013 28, 1723–1730. [Google Scholar] [CrossRef]Liu, S.; Xu, Z.; Hua, W.; Tang, G.; Xue, Y. Electromechanical Transient Modeling of Modular Multilevel Converter Based Multi-Terminal HVDC Systems. IEEE Trans. Power Syst. 2014, 29, 72–83. [Google Scholar] [CrossRef]Boyu, Q.; Wansong, L.; Ruowei, Z.; Tao, D.; Jialing, L. Small-signal stability analysis and optimal control parameters design of MMC-based MTDC transmission systems. IET Gener. Transm. Distrib. 2020. [Google Scholar] [CrossRef]Yu, S.; Zhang, S.; Wei, Y.; Zhu, Y.; Sun, Y. Efficient and accurate hybrid model of modular multilevel converters for large MTDC systems. IET Gener. Transm. Distrib. 2018, 12, 1565–1572. [Google Scholar] [CrossRef]Gnanarathna, U.N.; Gole, A.M.; Jayasinghe, R.P. Efficient Modeling of Modular Multilevel HVDC Converters (MMC) on Electromagnetic Transient Simulation Programs. IEEE Trans. Power Deliv. 2011, 26, 316–324. [Google Scholar] [CrossRef] [Green Version]Ajaei, F.B.; Iravani, R. Enhanced Equivalent Model of the Modular Multilevel Converter. IEEE Trans. Power Deliv. 2015, 30, 666–673. [Google Scholar] [CrossRef]Wang, S.; Alsokhiry, F.S.; Adam, G.P. Impact of Submodule Faults on the Performance of Modular Multilevel Converters. Energies 2020, 13, 4089. [Google Scholar] [CrossRef]Bucher, M.K.; Franck, C.M. Contribution of Fault Current Sources in Multiterminal HVDC Cable Networks. IEEE Trans. Power Deliv. 2013, 28, 1796–1803. [Google Scholar] [CrossRef] [Green Version]Xu, J.; Zhu, S.; Li,

Translate greek to english google trans

2014, 29, 1721–1730. [Google Scholar] [CrossRef]Prieto-Araujo, E.; Bianchi, F.D.; Junyent-Ferre, A.; Gomis-Bellmunt, O. Methodology for Droop Control Dynamic Analysis of Multi-terminal VSC-HVDC Grids for Offshore Wind Farms. IEEE Trans. Power Deliv. 2011, 26, 2476–2485. [Google Scholar] [CrossRef]Thams, F.; Eriksson, R.; Molinas, M. Interaction of Droop Control Structures and Its Inherent Effect on the Power Transfer Limits in Multi-terminal VSC-HVDC. IEEE Trans. Power Deliv. 2017, 32, 182–192. [Google Scholar] [CrossRef] [Green Version]Li, C.; Zhao, C.; Xu, J.; Ji, Y.; Zhang, F.; An, T. A Pole-to-Pole Short-Circuit Fault Current Calculation Method for DC Grids. IEEE Trans. Power Syst. 2017, 32, 4943–4953. [Google Scholar] [CrossRef]Eriksson, R.; Beerten, J.; Ghandhari, M.; Belmans, R. Optimizing DC Voltage Droop Settings for AC/DC System Interactions. IEEE Trans. Power Deliv. 2014, 29, 362–369. [Google Scholar] [CrossRef]Franck, C.M. HVDC Circuit Breakers: A Review Identifying Future Research Needs. IEEE Trans. Power Deliv. 2011, 26, 998–1007. [Google Scholar] [CrossRef] [Green Version]Marquardt, R. Modular multilevel converter: An universal concept for HVDC-networks and extended DC-bus-applications. In Proceedings of the 2010 International Power Electronics Conference-ECCE ASIA, Sapporo, Japan, 21–24 June 2010; pp. 502–507. [Google Scholar]Qin, J.; Saeedifard, M.; Rockhill, A.; Zhou, R. Hybrid Design of Modular Multilevel Converters for HVDC Systems Based on Various Submodule Circuits. IEEE Trans. Power Deliv. 2015, 30, 385–394. [Google Scholar] [CrossRef]Li, T.; Gole, A.M.; Zhao, C. Harmonic Instability in MMC-HVDC Converters Resulting from Internal Dynamics. IEEE Trans. Power Deliv. 2016, 31, 1738–1747. [Google Scholar] [CrossRef]Meng, X.; Han, J.; Pfannschmidt, J.; Wang, L.; Li, W.; Zhang, F.; Belanger, J. Combining Detailed Equivalent Model With Switching-Function-Based Average Value Model for Fast and Accurate Simulation of MMCs. IEEE Trans. Energy Convers. 2020, 35, 484–496. [Google Scholar] [CrossRef]Guo, D.; Rahman, M.H.; Ased, G.P.; Xu, L.; Emheme, A.; Burt, G.M.; Audichya, Y. Detailed quantitative comparison of half-bridge modular multilevel converter modelling methods. J. Eng. 2019, 2019, 1292–1298. [Google Scholar] [CrossRef]Song, Q.; Liu, W.; Li, X.; Rao, H.; Xu, S.; Li, L. A Steady-State Analysis Method for a Modular Multilevel Converter. IEEE Trans. Power Electron. 2013, 28, 3702–3713. [Google Scholar] [CrossRef]Xu, J.; Gole, A.M.; Zhao, C. The Use of Averaged-Value Model of Modular Multilevel Converter. Translator (Google Translate DeepL Translator), free and safe download. Translator (Google Translate DeepL Translator) latest version: Google Tran

Translate english to dutch google trans

Chen, Energy-efficient hybrid precoding design for millimeter-wave massive MIMO systems via coordinate update algorithms. IEEE Access 6, 17361–17367 (2018)Article Google Scholar W. Roh et al., Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results. IEEE Commun. Mag. 52(2), 106–113 (2014)Article Google Scholar S.K. Mohammed, E.G. Larsson, Per-antenna constant envelope precoding for large multi-user MIMO systems. IEEE Trans. Commun. 61(3), 1059–1071 (2013)Article Google Scholar P.V. Amadori, C. Masouros, Constant envelope precoding by interference exploitation in phase shift keying-modulated multiuser transmission. IEEE Trans. Wirel. Commun. 16(1), 538–550 (2017)Article Google Scholar F. Liu, C. Masouros, P.V. Amadori, H. Sun, An efficient manifold algorithm for constructive interference based constant envelope precoding. IEEE Signal Process. Lett. 24(10), 1542–1546 (2017)Article Google Scholar O.B. Usman, H. Jedda, A. Mezghani, J.A. Nossek, MMSE precoder for massive MIMO using 1-bit quantization, in 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, Mar. 2016, pp. 3381–3385.A.K. Saxena, I. Fijalkow, A.L. Swindlehurst, Analysis of one-bit quantized precoding for the multiuser massive MIMO downlink. IEEE Trans. Signal Process. 65(17), 4624–4634 (2017)Article MathSciNet Google Scholar S. Jacobsson, G. Durisi, M. Coldrey, T. Goldstein, C. Studer, Quantized precoding for massive MU-MIMO. IEEE Trans. Commun. 65(11), 4670–4684 (2017)Article Google Scholar L.T.N. Landau, R.C.D. Lamare, Branch-and-bound precoding for multiuser MIMO systems with 1-bit quantization. IEEE Wirel. Commun. Lett. 6(6), 770–773 (2017)Article Google Scholar H. Jedda, A. Mezghani, J.A. Nossek, A.L. Swindlehurst, Massive MIMO downlink 1-bit precoding with linear programming for PSK signaling, in 2017 IEEE 18th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Sapporo, Japan, July 2017: IEEE, pp. 1–5J.C. Chen, Alternating minimization algorithms for one-bit precoding in massive multiuser MIMO systems. IEEE Trans. Veh. Technol. 67(8), 7394–7406 (2018)Article Google Scholar A. Li, C. Masouros, F. Liu, A.L. Swindlehurst, Massive MIMO 1-bit DAC transmission: a low-complexity symbol scaling approach. IEEE Trans. Wireless Commun. 17(11), 7559–7575 (2018)Article Google Scholar A. Li, F. Liu, C. Masouros, Y. Li, B. Vucetic, Interference exploitation 1-Bit massive MIMO precoding: a partial branch-and-bound solution with near-optimal performance. IEEE Trans. Wirel. Commun. 19(5), 3474–3489 (2020)Article Google Scholar O.E. Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, R.W. Heath, Spatially sparse precoding in millimeter wave MIMO systems. IEEE Trans. Wirel. Commun. 13(3), 1499–1513 (2014)Article Google Scholar J.-C. Chen, Efficient codebook-based beamforming algorithm for millimeter-wave massive MIMO systems. IEEE Trans. Veh. Technol. 66(9), 7809–7817 (2017)Article Google Scholar A. Li, C. Masouros, Hybrid analog-digital Field image quality assessment via the light field coherence. IEEE Trans. Image Process. 29, 7945–7956 (2020)Article Google Scholar X. Min, J. Zhou, G. Zhai, P. Le Callet, X. Yang, X. Guan, A metric for light field reconstruction, compression, and display quality evaluation. IEEE Trans. Image Process. 29, 3790–3804 (2020)Article Google Scholar C. Meng, P. An, X. Huang, C. Yang, D. Liu, Full reference light field image quality evaluation based on angular-spatial characteristic. IEEE Signal Process. Lett. 27, 525–529 (2020)Article Google Scholar W. Zhou, L. Shi, Z. Chen, J. Zhang, Tensor oriented no-reference light field image quality assessment. IEEE Trans. Image Process. 29, 4070–4084 (2020)Article Google Scholar Y. Liu, G. Jiang, Z. Jiang, Z. Pan, M. Yu, Y.-S. Ho, Pseudoreference subaperture images and microlens image-based blind light field image quality measurement. IEEE Trans. Inst. Meas. 70, 1–15 (2021)Article Google Scholar J. Xiang, G. Jiang, M. Yu, Z. Jiang, Y.-S. Ho, No-reference light field image quality assessment using four-dimensional sparse transform. IEEE Transactions on Multimedia (2021)Q. Qu, X. Chen, V. Chung, Z. Chen, Light field image quality assessment with auxiliary learning based on depthwise and anglewise separable convolutions. IEEE Trans. Broadcast. 67(4), 837–850 (2021)Article Google Scholar P. Zhao, X. Chen, V. Chung, H. Li, Delfiqe-a low-complexity deep learning-based light field image quality evaluator. IEEE Trans. Instrum. Meas. 70, 1–11 (2021) Google Scholar Z. Pan, M. Yu, G. Jiang, H. Xu, Y.-S. Ho, Combining tensor slice and singular value for blind light field image quality assessment. IEEE J. Selected Topics Signal Process. 15(3), 672–687 (2021)Article Google Scholar C. Meng, P. An, X. Huang, C. Yang, L. Shen, B. Wang, Objective quality assessment of lenslet light field image based on focus stack. IEEE Trans. Multimed. 24, 3193–3207 (2021)Article Google Scholar H. Huang, H. Zeng, J. Hou, J. Chen, J. Zhu, K.-K. Ma, A spatial

English to urdu translation google tran

Be achieved as compared with that of using the linear activation function. Figure 13 shows the position errors of the end-effector and the convergence error of \(r_P\) with \(c_1=c_3=10\), and we could observe that, the error performance can be enhanced with larger parameters \(c_1\) and \(c_3\), and still, the error can be lowered by using the hyperbolic sine activation function.6 ConclusionIn this paper, for the first time, a RNN-based approach with a simplified neural network architecture is proposed to solve the redundancy resolution issue with RCM constraints, with a new and general dynamic optimization formulation containing the RCM constraints investigated. Theoretical results analyze and convergence properties of the proposed simplified RNN for redundancy resolution of manipulators with RCM constraints. Simulation results further demonstrate the efficiency of the proposed method in end-effector path tracking control under RCM constraints based on an industrial redundant manipulator model. ReferencesYang C, Peng G, Li Y, Cui R, Cheng L, Li Z (2019) Neural networks enhanced adaptive admittance control of optimized robot-environment interaction. IEEE Trans Cybern 49(7):2568–2579Article Google Scholar Cao R, Cheng L, Yang C, Dong Z (2021) Iterative assist-as-needed control with interaction factor for rehabilitation robots. Sci China Technol Sci 64(4):836–846Article Google Scholar Sun T, Cheng L, Hou Z, Tan M (2021) Science China Information Sciences 64:172205Klein CA, Huang CH (1983) Review of pseudoinverse control for use with kinematically redundant manipulators. IEEE Trans Syst Man Cybern 13(2):245–250Article Google Scholar Maciejewski AA (1991) Kinetic limitations on the use of redundancy in robotic manipulators. IEEE Trans Robot Autom 7(2):205–210Article Google Scholar Li S, Zhang Y, Jin L (2017) Kinematic control of redundant manipulators using neural networks. IEEE Trans Neural Netw Learn Syst 28(10):2243–2254Article MathSciNet Google Scholar Li S, He J, Li Y, Rafique MU (2017) Distributed recurrent neural networks for cooperative control of manipulators: a game-theoretic perspective. IEEE Trans Neural Netw Learn Syst 28(2):415–426Article MathSciNet Google Scholar Li S, Shao Z, Guan Y (2019) A dynamic neural network approach for efficient control of manipulators. IEEE Trans Syst Man Cybern 49(5):932–941Article Google Scholar Li S, Zhou M, Luo X (2018) Modified primal-dual neural networks for motion control of redundant manipulators with dynamic rejection of harmonic noises. IEEE Trans Neural Netw Learn Syst 29(10):4791–4801Article MathSciNet Google Scholar Li Z, Xia Y, Wang D, Zhai D, Su C, Zhao X (2016) Neural network-based control of networked trilateral teleoperation with geometrically unknown constraints. IEEE Trans Cybern 46(5):1051–1064Article Google Scholar Zhou Q, Zhao S, Li H, Lu R, Wu C (2019) Adaptive neural network tracking control for robotic manipulators with dead zone. IEEE Trans Neural Netw Learn Syst 30(12):3611–3620Article MathSciNet Google Scholar Liao B, Zhang Y, Jin L (2016) Taylor \(o(h^{3})\) discretization of ZNN models for dynamic equality-constrained quadratic programming with application to manipulators. IEEE Trans Neural Netw Learn Syst 27(2):225–237Article MathSciNet Google Scholar Zhang Y, Li S, Zou J, Khan AH (2020) A passivity-based approach for kinematic control of manipulators with constraints. IEEE Trans Ind Inf 16(5):3029–3038Article Google Scholar Xiao L, Zhang Y (2013) Acceleration-level repetitive motion planning and its experimental

Translate urdu into english google tran

Balancing Method. IEEE Trans. Ind. Electron. 2013, 60, 4525–4535. [Google Scholar] [CrossRef]Huang, Q.; Zou, G.; Sun, W.; Xu, C. Fault current limiter for the MMC-based multi-terminal DC grids. IET Gener. Transm. Distrib. 2020, 14, 3269–3277. [Google Scholar] [CrossRef]Rao, H. Architecture of Nan’ao multi-terminal VSC-HVDC system and its multi-functional control. CSEE J. Power Energy Syst. 2015, 1, 9–18. [Google Scholar] [CrossRef]Liu, K.; Huai, Q.; Qin, L.; Zhu, S.; Liao, X.; Li, Y.; Ding, H. Enhanced Fault Current-Limiting Circuit Design for a DC Fault in a Modular Multilevel Converter-Based High-Voltage Direct Current System. Appl. Sci. 2019, 9, 1661. [Google Scholar] [CrossRef] [Green Version]Wang, C.; Li, B.; He, J.; Xin, Y. Design and Application of the SFCL in the Modular Multilevel Converter Based DC System. IEEE Trans. Appl. Supercond. 2017, 27, 1–4. [Google Scholar] [CrossRef]Wang, S.; Li, C.; Adeuyi, O.D.; Li, G.; Ugalde-Loo, C.E.; Liang, J. Coordination of MMCs With Hybrid DC Circuit Breakers for HVDC Grid Protection. IEEE Trans. Power Deliv. 2019, 2019 34, 11–22. [Google Scholar] [CrossRef] [Green Version]Ghanbari, T.; Farjah, E.; Zandnia, A. Development of a high-performance bridge-type fault current limiter. IET Gener. Transm. Distrib. 2014, 8, 486–494. [Google Scholar] [CrossRef]Sujuan, X.; Yufeng, Q.; Tianshu, B. Resistive DC fault current limiter. J. Eng. 2017, 2017, 1682–1685. [Google Scholar] [CrossRef]Jiang, Z.; Wang, Y.; Dai, S.; Ma, T.; Yuan, X.; Liu, M.; Chen, H.; Wang, M.; Peng, C. Application and Design of Resistive SFCL in pm160 kV MMC-HVdc System. IEEE Trans. Appl. Supercond. 2019, 29, 1–5. [Google Scholar]Li, B.; He, J. Studies on the Application of R-SFCL in the VSC-Based DC Distribution System. IEEE Trans. Appl. Supercond. 2016, 26, 1–5. [Google Scholar] [CrossRef]Khan, U.A.; Lee, J.; Amir, F.; Lee, B. A Novel Model of HVDC Hybrid-Type Superconducting Circuit Breaker and Its Performance Analysis for Limiting and Breaking DC Fault Currents. IEEE Trans. Appl. Supercond. 2015, 25, 1–9. [Google Scholar] [CrossRef]Nourmohamadi, H.; Nazari-Heris, M.; Sabahi, M.; Abapour, M. A Novel Structure for Bridge-Type Fault Current Limiter: Capacitor-Based Nonsuperconducting FCL. IEEE Trans. Power Electron. 2018, 33, 3044–3051. [Google Scholar] [CrossRef]Xin, Y.; Yang, Y.; Wang, W.; Wang, T.; Xu, G.; Dong, Q. Current Suppresvsion Method. Translator (Google Translate DeepL Translator), free and safe download. Translator (Google Translate DeepL Translator) latest version: Google Tran

Translate english to rwanda google tran

Scholar] [CrossRef]Chen, J.; Wang, C.; Chen, J. Investigation on the selection of electric power system architecture for future more electric aircraft. IEEE Trans. Transp. Electrif. 2018, 4, 563–576. [Google Scholar] [CrossRef]Gong, X.; Ge, W.; Yan, J.; Zhang, Y.; Gongye, X. Review on the Development, Control Method and Application Prospect of Brake-by-Wire Actuator. Actuators 2020, 9, 15. [Google Scholar] [CrossRef]Line, C.; Manzie, C.; Malcolm, G.C. Electromechanical Brake Modeling and Control: From PI to MPC. IEEE Trans. Control Syst. Technol. 2008, 16, 446–457. [Google Scholar] [CrossRef]Peng, X.; Jia, M.; He, L.; Yu, X.; Lv, Y. Fuzzy sliding mode control based on longitudinal force estimation for electro-mechanical braking systems using BLDC motor. CES Trans. Electr. Mach. Syst. 2018, 2, 142–151. [Google Scholar] [CrossRef]Atia, M.R.A.; Haggag, S.A.; Kamal, A.M.M. Enhanced Electromechanical Brake-by-Wire System Using Sliding Mode Controller. J. Dyn. Syst. Meas. Control 2016, 138, 041003. [Google Scholar] [CrossRef]Nakkarat, P.; Kuntanapreeda, S. Observer-based backstepping force control of an electrohydraulic actuator. Control Eng. Pract. 2009, 17, 895–902. [Google Scholar] [CrossRef]Barambones, O.; Cortajarena, J.A.; Alkorta, P. New Control Schemes for Actuators. Actuators 2024, 13, 99. [Google Scholar] [CrossRef]Jing, C.; Xu, H.; Jiang, J. Practical torque tracking control of electro-hydraulic load simulator using singular perturbation theory. ISA Trans. 2020, 102, 304–313. [Google Scholar] [CrossRef]Ma, R.; Zhang, H.; Yuan, M.; Liang, B.; Li, Y.; Huangfu, Y. Chattering suppression fast terminal sliding mode control for aircraft EMA braking system. IEEE Trans. Transp. Electrif. 2021, 7, 1901–1914. [Google Scholar] [CrossRef]Huang, J.; Song, Z.; Wu, J.; Guo, H.; Qiu, C.; Tan, Q. Parameter Adaptive Sliding Mode Force Control for Aerospace Electro-Hydraulic Load Simulator. Aerospace 2023, 10, 160. [Google Scholar] [CrossRef]Kim, G.; You, S.; Lee, S.; Shin, D.; Kim, W. Robust nonlinear torque control using steering wheel torque model for electric power steering system. IEEE Trans. Veh. Technol. 2023, 72, 9555–9560. [Google Scholar] [CrossRef]Xing, X.; Zhang, S.; Huang, T.; Huang, J.S.; Su, H.; Li, Y. Spatial Iterative Learning Torque Control of Robotic Exoskeletons for High Accuracy and Rapid Convergence Assistance. In IEEE/ASME Transactions on Mechatronics; IEEE: Piscataway, NJ, USA, 2024. [Google Scholar]Özkan, B. Control of an Electromechanical Control Actuation System Using a Fractional Order Proportional, Integral, and Derivative-Type Controller. IFAC Proc. Vol. 2014, 47, 4493–4498. [Google Scholar] [CrossRef]Wrat, G.; Bhola, M.; Ranjan, P.; Mishra, S.K.; Das, J. Energy saving and Fuzzy-PID position control of electro-hydraulic system by leakage compensation through proportional flow control valve. ISA Trans. 2020, 101, 269–280. [Google Scholar] [CrossRef]Temporelli, R.;

Comments

User9681

Source command-line language translator tool powered by Google Translate, Yandex Translate, Apertium, and Bing Translator. It is available for most POSIX-compliant systems including Windows (via Cygwin, WSL, or MSYS2), GNU/Linux, macOS, and BSD.Translate Shell allows users to use it for simple translations or as an interactive shell. For simple translations, Translate Shell gives details of the translated text by default unless when made to do exclude the details using the keyword, brief.$ trans 'Saluton, Mondo!'Saluton, Mondo!Hello, World!Translations of Saluton, Mondo![ Esperanto -> English ]Saluton , Hello,Mondo ! World!$ trans -brief 'Saluton, Mondo!'Hello, World!When used as an interactive shell, it will translate the texts as you enter them line by line. For example,$ trans -shell -brief> Rien ne réussit comme le succès.Nothing succeeds like success.> Was mich nicht umbringt, macht mich stärker.What does not kill me makes me stronger.> Юмор есть остроумие глубокого чувства.Humor has a deep sense of wit.> 幸福になるためには、人から愛されるのが一番の近道。In order to be happy, the best way is to be loved by people.Install Translate Shell in LinuxMy recommended download method is for you to grab the self-contained executable file from here, place it in your path, and run the following commands:$ wget git.io/trans$ chmod +x ./transFor more details on installation and usage check its official GitHub page here.Do you know other awesome command line text translator apps for Linux? Add your suggestions in the comments section below.

2025-04-12
User6665

In DC Grid. IEEE Trans. Power Deliv. 2015, 30, 519–528. [Google Scholar] [CrossRef]Saad, H.; Dennetière, S.; Mahseredjian, J.; Delarue, P.; Guillaud, X.; Peralta, J.; Nguefeu, S. Modular Multilevel Converter Models for Electromagnetic Transients. IEEE Trans. Power Deliv. 2014, 29, 1481–1489. [Google Scholar] [CrossRef]Guo, C.; Yang, J.; Zhao, C. Investigation of Small-Signal Dynamics of Modular Multilevel Converter Under Unbalanced Grid Conditions. IEEE Trans. Ind. Electron. 2019, 66, 2269–2279. [Google Scholar] [CrossRef]Guo, C.; Liu, W.; Zhao, J.; Zhao, C. Impact of control system on small-signal stability of hybrid multi-infeed HVDC system. IET Gener. Transm. Distrib. 2018, 12, 4233–4239. [Google Scholar] [CrossRef]Peralta, J.; Saad, H.; Dennetiere, S.; Mahseredjian, J.; Nguefeu, S. Detailed and Averaged Models for a 401-Level MMC–HVDC System. IEEE Trans. Power Deliv. 2012, 27, 1501–1508. [Google Scholar] [CrossRef]Saad, H.; Peralta, J.; Dennetière, S.; Mahseredjian, J. Dynamic Averaged and Simplified Models for MMC-Based HVDC Transmission Systems. IEEE Trans. Power Deliv. 2013, 2013 28, 1723–1730. [Google Scholar] [CrossRef]Liu, S.; Xu, Z.; Hua, W.; Tang, G.; Xue, Y. Electromechanical Transient Modeling of Modular Multilevel Converter Based Multi-Terminal HVDC Systems. IEEE Trans. Power Syst. 2014, 29, 72–83. [Google Scholar] [CrossRef]Boyu, Q.; Wansong, L.; Ruowei, Z.; Tao, D.; Jialing, L. Small-signal stability analysis and optimal control parameters design of MMC-based MTDC transmission systems. IET Gener. Transm. Distrib. 2020. [Google Scholar] [CrossRef]Yu, S.; Zhang, S.; Wei, Y.; Zhu, Y.; Sun, Y. Efficient and accurate hybrid model of modular multilevel converters for large MTDC systems. IET Gener. Transm. Distrib. 2018, 12, 1565–1572. [Google Scholar] [CrossRef]Gnanarathna, U.N.; Gole, A.M.; Jayasinghe, R.P. Efficient Modeling of Modular Multilevel HVDC Converters (MMC) on Electromagnetic Transient Simulation Programs. IEEE Trans. Power Deliv. 2011, 26, 316–324. [Google Scholar] [CrossRef] [Green Version]Ajaei, F.B.; Iravani, R. Enhanced Equivalent Model of the Modular Multilevel Converter. IEEE Trans. Power Deliv. 2015, 30, 666–673. [Google Scholar] [CrossRef]Wang, S.; Alsokhiry, F.S.; Adam, G.P. Impact of Submodule Faults on the Performance of Modular Multilevel Converters. Energies 2020, 13, 4089. [Google Scholar] [CrossRef]Bucher, M.K.; Franck, C.M. Contribution of Fault Current Sources in Multiterminal HVDC Cable Networks. IEEE Trans. Power Deliv. 2013, 28, 1796–1803. [Google Scholar] [CrossRef] [Green Version]Xu, J.; Zhu, S.; Li,

2025-04-16
User4732

2014, 29, 1721–1730. [Google Scholar] [CrossRef]Prieto-Araujo, E.; Bianchi, F.D.; Junyent-Ferre, A.; Gomis-Bellmunt, O. Methodology for Droop Control Dynamic Analysis of Multi-terminal VSC-HVDC Grids for Offshore Wind Farms. IEEE Trans. Power Deliv. 2011, 26, 2476–2485. [Google Scholar] [CrossRef]Thams, F.; Eriksson, R.; Molinas, M. Interaction of Droop Control Structures and Its Inherent Effect on the Power Transfer Limits in Multi-terminal VSC-HVDC. IEEE Trans. Power Deliv. 2017, 32, 182–192. [Google Scholar] [CrossRef] [Green Version]Li, C.; Zhao, C.; Xu, J.; Ji, Y.; Zhang, F.; An, T. A Pole-to-Pole Short-Circuit Fault Current Calculation Method for DC Grids. IEEE Trans. Power Syst. 2017, 32, 4943–4953. [Google Scholar] [CrossRef]Eriksson, R.; Beerten, J.; Ghandhari, M.; Belmans, R. Optimizing DC Voltage Droop Settings for AC/DC System Interactions. IEEE Trans. Power Deliv. 2014, 29, 362–369. [Google Scholar] [CrossRef]Franck, C.M. HVDC Circuit Breakers: A Review Identifying Future Research Needs. IEEE Trans. Power Deliv. 2011, 26, 998–1007. [Google Scholar] [CrossRef] [Green Version]Marquardt, R. Modular multilevel converter: An universal concept for HVDC-networks and extended DC-bus-applications. In Proceedings of the 2010 International Power Electronics Conference-ECCE ASIA, Sapporo, Japan, 21–24 June 2010; pp. 502–507. [Google Scholar]Qin, J.; Saeedifard, M.; Rockhill, A.; Zhou, R. Hybrid Design of Modular Multilevel Converters for HVDC Systems Based on Various Submodule Circuits. IEEE Trans. Power Deliv. 2015, 30, 385–394. [Google Scholar] [CrossRef]Li, T.; Gole, A.M.; Zhao, C. Harmonic Instability in MMC-HVDC Converters Resulting from Internal Dynamics. IEEE Trans. Power Deliv. 2016, 31, 1738–1747. [Google Scholar] [CrossRef]Meng, X.; Han, J.; Pfannschmidt, J.; Wang, L.; Li, W.; Zhang, F.; Belanger, J. Combining Detailed Equivalent Model With Switching-Function-Based Average Value Model for Fast and Accurate Simulation of MMCs. IEEE Trans. Energy Convers. 2020, 35, 484–496. [Google Scholar] [CrossRef]Guo, D.; Rahman, M.H.; Ased, G.P.; Xu, L.; Emheme, A.; Burt, G.M.; Audichya, Y. Detailed quantitative comparison of half-bridge modular multilevel converter modelling methods. J. Eng. 2019, 2019, 1292–1298. [Google Scholar] [CrossRef]Song, Q.; Liu, W.; Li, X.; Rao, H.; Xu, S.; Li, L. A Steady-State Analysis Method for a Modular Multilevel Converter. IEEE Trans. Power Electron. 2013, 28, 3702–3713. [Google Scholar] [CrossRef]Xu, J.; Gole, A.M.; Zhao, C. The Use of Averaged-Value Model of Modular Multilevel Converter

2025-04-16

Add Comment